a2 United States Patent

US009256398B2

(10) Patent No.: US 9,256,398 B2

Yoshida 45) Date of Patent: Feb. 9, 2016
(54) DEVICE AND METHOD OF INCREASING (56) References Cited
DYNAMICALLY-TYPED SOFTWARE
EFFICIENCY U.S. PATENT DOCUMENTS
7,340,726 Bl 3/2008 Chelf et al.
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 7,478,367 B2 1/2009 Morgan et al.
Kanagawa (JP) 2008/0178149 Al* 7/2008 Petersonetal. 717/110
2012/0180025 Al* 7/2012 Webb 717/114
. . . . 2013/0067441 Al* 3/2013 Lafreniere et al. .. . 717/139
(72) Inventor: Hiroaki Yoshida, Cupertino, CA (US) 2013/0205286 Al* 82013 Barraclough etal. 717/151
2014/0047423 Al* 22014 Pizlo etal. o..... - 7113
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) 2014/0173556 Al* 6/2014 Robatmilietal. 717115
OTHER PUBLICATIONS
(*) Notice: SUbjeCt, to any diSCIaimer{ the term of this L. Peter Deutsch, Allan M. Schiffman, “Efficient implementation of
patent is extended or adjusted under 35 the smalltalk-80 system”, Seminar Tracing JITs, Ierox PARC &
U.S.C. 154(b) by 175 days. Fairchild Laboratory for Artificial Intelligence Research, Jan. 1984.
(21) Appl. No.: 13/837,231 * cited by examiner
led: Primary Examiner — Duy Khuong Nguyen
(22) Filed: Mar. 15, 2013 74) Attorney, Agent, or Firm — Maschoff Brennan
€y, Ag
(65) Prior Publication Data (57 ABSTRACT
According to an aspect of an embodiment, a method of
US 2014/0282381 Al Sep. 18, 2014 increasing efficiency of a software program may include
executing a software program that is developed based on a
(51) Int.CL dynamically-typed programming language. The method may
GO6F 9/44 (2006.01) also include determining, during execution of the software
(52) US.CL program, type information for variables included in the soft-
CPC oo GOGF 8/00 (2013.01) ware program. Additionally, the method may include gener-
(58) Field of Classification Search ating a modified software program based on the software
CPC .o GOGF 8/41; GOGF 8/43; GOGF 11/36 ~ Program and the type information and distributing the modi-
USPC oo 717/148, 150,153 fied software program.

See application file for complete search history.

16 Claims, 3 Drawing Sheets

/300

Receive A Dynamically-Typed Software Program 302
Execute The Dynamically-Typed Software Program 304
Determine Type Information For Variables Of | _-306

The Dynamically-Typed Software Program
Generate A Modified Dynamically-Typed Software Program 308
Distribute The Modified Dynamically-Typed Software Program |~ 810

US 9,256,398 B2

Sheet 1 of 3

Feb. 9, 2016

U.S. Patent

90, weliboid
SIEMYOS PaLIPON

QS.\

| b4

704
a|nNpoy\ uonew.ojul-adA |

=

20}
welboid a1emyos

US 9,256,398 B2

Sheet 2 of 3

Feb. 9, 2016

U.S. Patent

Z 'bi4

84 8INPO uonnquisig

90¢ Weiboid
9IeMOS P3LIPON

9/ 8INPON 31eM}OS PaLIPOJ

80¢

SN 3591

v1z 9npojy Buiyoe) auluj

0i2 9Inpol\ Buijoid

042 3[NPOJ\ uonNndax3

%0z ©|NPOJ\ uonewJojul-adA |

202
weiboid aremyos

AN

U.S. Patent Feb. 9, 2016 Sheet 3 of 3 US 9,256,398 B2

/'300

Receive A Dynamically-Typed Software Program 302
Y
Execute The Dynamically-Typed Software Program 304
|
Determine Type Information For Variables Of | 306
The Dynamically-Typed Software Program
Y
Generate A Modified Dynamically-Typed Software Program 308
Y
Distribute The Modified Dynamically-Typed Software Program 310

Fig. 3

US 9,256,398 B2

1
DEVICE AND METHOD OF INCREASING
DYNAMICALLY-TYPED SOFTWARE
EFFICIENCY

FIELD

The embodiments discussed herein are related to increas-
ing the efficiency of dynamically-typed software.

BACKGROUND

As usage of electronic devices increases, so does the num-
ber of software programs that run on these devices. Many of
these software programs are developed using a dynamically-
typed programming language, which may be referred to as
“dynamically-typed software.” Code of dynamically-typed
software may include variables that do not have their type
checked until the software program is run. Accordingly, the
type information for the variables may be determined prima-
rily during execution (i.e., at runtime) of the dynamically-
typed software. Dynamically-typed languages may allow
greater flexibility in programming as compared to statically-
typed programming languages. However, due in part to the
runtime operations to determine type information of variables
in dynamically-typed software, dynamically-typed software
may also consume more computing resources of electronic
devices than statically typed software.

The subject matter claimed herein is not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background is only provided to illustrate one example tech-
nology area where some embodiments described herein may
be practiced.

SUMMARY

According to an aspect of an embodiment, a method of
increasing efficiency of a software program may include
executing a software program that is developed based on a
dynamically-typed programming language. The method may
also include determining, during execution of the software
program, type information for variables included in the soft-
ware program. Additionally, the method may include gener-
ating a modified software program based on the software
program and the type information and distributing the modi-
fied software program.

The object and advantages of the embodiments described
herein will be realized and achieved at least by the elements,
features, and combinations particularly pointed out in the
claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will be described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

FIG. 1 illustrates an example system of increasing effi-
ciency of dynamically-typed software;

FIG. 2 illustrates an example type-information module
configured to increase the efficiency of dynamically-typed
software; and

10

35

40

45

2

FIG. 3 is a flow chart of an example method of increasing
efficiency of dynamically-typed software.

DESCRIPTION OF EMBODIMENTS

Some embodiments described herein relate to methods and
systems of increasing efficiency of software that may be
based on a dynamically-typed language, which may be
referred to hereinafter as “dynamically-typed software.” A
variable of dynamically-typed software may have atype, such
as, for example and without limitation, character, string, inte-
ger, float, byte, double, Boolean, pointer, array, structure, an
object or instance of a class, and enumeration. A type of a
variable indicates what type of data (e.g., actual values) may
be assigned to the variable. For example, integer values may
be assigned to a variable whose type is integer; and true-false
values may be assigned to a variable whose type is Boolean.

Code of dynamically-typed software may include vari-
ables that do not have their type checked until the software
program is run. Accordingly, the type information for the
variables may be determined primarily during execution (i.e.,
at runtime) of the dynamically-typed software which may
increase the use of resources to execute the dynamically-
typed software.

As discussed in further detail below, a type-information
module may be configured to determine type information for
variables included in dynamically typed software before the
dynamically typed software is distributed for use by one or
more users. This ahead-of-time (AOT) type information
determination of the variables may reduce the resources used
to perform type checking of the variables during a subsequent
execution of the dynamically-typed software.

Embodiments of the present disclosure will be explained
with reference to the accompanying drawings.

FIG. 1 illustrates an example system 100 for increasing
efficiency of a dynamically-typed software program 102
(“the software 102”), arranged in accordance with the least
one embodiment described herein. The software 102 may
include variables whose types may be checked during execu-
tion (or run-time) of the software 102. Additionally, during
execution of dynamically typed software, different types may
be used for a variable depending on which data structure or
path of the dynamically typed software is being executed at
the time. Some examples of dynamically-typed software pro-
gramming languages where variable types may be checked
during execution of the software, include but are not limited
to, JavaScript, Python, Ruby, MATLAB, Lisp, Lua, and APL.

In some embodiments, a type-information module 104 of
the system 100 may be configured to execute the software 102
to determine type information associated with one or more
variables of the software 102. In some embodiments, the
type-information module 104 may execute the software 102
using a test suite or symbolic execution, as described in fur-
ther detail below with respect to FIG. 2.

The type information may include information associated
with types that may be used for the variables of the software
102 during execution of the software 102. For example, in
some embodiments, the type information may include the
different types that may be assigned to the variables during
execution of the software 102. In these or other embodiments,
the type information may include which types may be
assigned to the variables during execution of specific paths or
data structures of the software 102. Additionally, the type
information may include a specific set of instructions that
may identify a type associated a variable in a specific path or
data structure of the software 102 and that may indicate which
operations to perform based on the identified type.

US 9,256,398 B2

3

During the execution of the software 102, the type-infor-
mation module 104 may be configured to determine the type
information for the variables included in the software 102 and
may also be configured to remember the determined type
information for the variables. In some embodiments, the type-
information module 104 may be configured to look up type
information for a variable of the software 102 when the vari-
able is used during execution of the software 102.

For instance, the type-information module 104 may be
configured to lookup type information for a variable of the
software 102 when the variable is passed to a function of the
software 102 that may be called during execution of the
software 102. The type-information module 104 may also be
configured to remember the type information of the variable
associated with the variable being used by the called function.

As described in further detail with respect to FIG. 2, in
some embodiments, the type-information module 104 may be
further configured to perform profiling of the software 102 as
part of determining the type information. Further, the type
information module 104 may be configured to perform in-line
caching with respect to the determined type information. As
discussed in further detail below with respect to FIG. 2, the
type-information module 104 may also be configured to gen-
erate a modified dynamically-typed software program 106
(“modified software 106) based on the determined and
remembered type information and the software 102. For
example, the modified software 106 may include the software
102 with the type information stored therein. Additionally, in
some embodiments, the type information module 104 may be
configured to generate the modified software 106 based on the
in-line caching such that the results of the in-line caching with
respect to the software 102 may be stored in the modified
software 106. The type-information module 104 may also be
configured to store the modified dynamically-typed software
106 such that the modified software 106 may then be distrib-
uted to one or more users.

Accordingly, the type-information module 104 may be
configured to determine type information for one or more of
the variables included in the modified software 106 before the
modified software 106 is distributed for use by one or more
users—which may be referred to as ahead-of-time type infor-
mation determination. The type information determined
ahead-of-time may reduce the resources used during execu-
tion of the modified software 106 as compared to the
resources used during execution of dynamically-typed soft-
ware where type information may not be determined ahead-
of-time, such as in the software 102.

FIG. 2 illustrates an example embodiment of a type-infor-
mation module 204, arranged in accordance with the least one
embodiment described herein. In some embodiments, the
type-information module 204 may be configured to be analo-
gous to the type-information module 104 of FIG. 1. The
type-information module 204 may be implemented by any
suitable mechanism, such as a program, software, function,
library, software-as-a-service, analog or digital circuitry, or
any combination thereof. In some embodiments, the type-
information module 204 may be embodied in logic or instruc-
tions resident in memory for execution by a processor.

The processor may include, for example, a microprocessor,
microcontroller, digital signal processor (DSP), application
specific integrated circuit (ASIC), a Field Programmable
Gate Array (FPGA), or any other digital or analog circuitry
configured to interpret and/or to execute program instructions
and/or to process data. In some embodiments, the processor
may interpret and/or execute program instructions and/or
process data stored in the memory.

10

15

20

25

30

35

40

45

50

55

60

65

4

The memory may include any suitable computer-readable
media configured to retain program instructions and/or data
for a period of time. By way of example, and not limitation,
such computer-readable media may include tangible com-
puter-readable storage media including Random Access
Memory (RAM), Read-Only Memory (ROM), Electrically
Erasable Programmable Read-Only Memory (EEPROM),
Compact Disc Read-Only Memory (CD-ROM) or other opti-
cal disk storage, magnetic disk storage or other magnetic
storage devices, flash memory devices (e.g., solid state
memory devices), or any other storage medium which may be
used to carry or store desired program code in the form of
computer-executable instructions or data structures and
which may be accessed by the processor. Combinations of the
above may also be included within the scope of computer-
readable media. Computer-executable instructions may
include, for example, instructions and data that cause a gen-
eral purpose computer, special purpose computer, or special
purpose processing device (e.g., the processor) to perform a
certain function or group of functions.

In some embodiments, the type-information module 204
may include an execution module 210. The execution module
210 may be configured to receive and execute a dynamically-
typed software program 202 (“software 202”). In some
embodiments, the execution module 210 may be configured
to execute the software 202 using a received test suite 208
associated with the software 202 and/or by performing sym-
bolic execution with respect to the software 202.

The test suite 208 may be any appropriate set of com-
mands, instructions, and/or concrete values that may be used
to initiate one or more operations of the software 202 such
that one or more paths of the software 202 may be explored.
During the execution of the software 202 using the test suite
208, one or more variables of the software 202 may be called
such that type information associated with the variables may
be determined. Accordingly, the execution module 210 may
be configured to use the test suite 208 to execute the software
202 such that type information associated with one or more
variables of the software 202 may be determined.

As mentioned above, in these and other embodiments, the
execution module 210 may also be configured to use sym-
bolic execution to execute the software 202. Symbolic execu-
tion is a technique for dynamically analyzing a software
program. Symbolic execution may use symbolic values
instead of concrete values as input values and may represent
values of program variables as symbolic expressions. As a
result, the outputs computed by a software program that is
symbolically executed may be expressed as functions of the
symbolic inputs. Through symbolic execution, each path
within a software program may be symbolically executed.
Whenever symbolic execution along a path terminates (nor-
mally or with an error), a path constraint associated with the
path may be established.

Accordingly, the execution module 210 may be configured
to perform symbolic execution to execute the software 202
such that one or more variables of the software 202 may be
called during the symbolic execution ofthe software 202. The
execution module 210 may thus be configured to determine
type information associated with one or more of the variables
of the software 202 when the variables are called during the
symbolic execution of the software 202.

During execution of the software 202 (using the test suite
208 or symbolic execution), the execution module 210 may
be configured to determine the type information associated
with the variables in the software 202. In some embodiments,
the execution module 210 may be configured to perform
runtime method binding during execution of the software 202

US 9,256,398 B2

5

to determine the type information. Runtime method binding
may be used to determine which type may be used for a
variable with an unspecified type in a particular instance
when the variable is called. For example, during runtime
method binding, a dynamic lookup method may be performed
for the variable to determine the type for the variable when the
variable is called in the particular instance.

As mentioned above, in different instances, for example
within different execution paths or data structures of the soft-
ware 202, a variable may be assigned a different type. As a
result, the type information associated with the variables in
the software 202 may include one or more types that may be
assigned to the variables during execution of the software
202. For example, the type information for a variable may
indicate that the variable may be assigned as an integer,
double, and/or float type in different execution paths in the
software 202.

In some embodiments, the execution module 210 may
include an in-line caching module 214 that may be configured
to perform in-line caching during execution of the software
202. As discussed in further detail below, in-line caching may
be used to store the type information derived from a previ-
ously executed dynamic lookup method. The in-line caching
may be used to store the type information in a data structure
of the software 202 that may be associated with a call site
where the previously executed dynamic lookup method may
have been performed to determine the type information.
Therefore, the type information may be accessed when the
call site is subsequently encountered instead of performing
another dynamic lookup method to determine the type infor-
mation. The in-line caching module 214 may be configured to
perform any suitable type of in-line caching including mono-
morphic in-line caching, polymorphic in-line caching, and/or
metamorphic in-line caching.

In some embodiments, variables associated with a particu-
lar call site of the software 202 (e.g., variables that are passed
as arguments to a function at the particular call site) may often
have the same type, or a limited number of types, with respect
to the particular call site. In-line caching performed by the
in-line caching module 214 may be based on this precept such
that the type information derived from the results of a
dynamic lookup for one or more variables in a particular call
site of the software 202 may be stored in-line with the data
structure (and its corresponding code) of the software 202 that
may be associated with the particular call site. Therefore,
when the particular call site is reached again, the type infor-
mation stored in the data structure associated with the call site
may be accessed instead of invoking the dynamic lookup
method.

In some embodiments, a modified software module 216 of
the type-information module 204 may be configured to gen-
erate a modified dynamically-typed software program 206
(“modified software 206”). The modified software 206 may
be based on the software 202 and the determined type infor-
mation. For example, in some embodiments, the modified
software module 216 may be configure to store as the modi-
fied software 206, the results of the in-line caching of the
software 202 such that the modified software 206 may include
the software 202 and the type information added to the soft-
ware 202 during the in-line caching.

In some embodiments, the execution module 210 may also
include a profiling module 212 configured to determine pro-
file information associated with the software 202. In some
embodiments, the profiling module 212 may be configured to
determine the profile information by performing a dynamic
program analysis of the software 202 during execution of the
software 202. For example, the profiling module 212 may be

10

15

20

25

30

35

40

45

50

55

60

65

6

configured to determine, and include in the profile informa-
tion, memory or time complexities of the software 202, usage
of particular instructions within the software 202, frequency
and/or duration of variable uses within the software 202,
and/or frequency and/or duration of function calls within the
software 202. Additionally, the profiling module 212 may be
configured to determine, and include in the profile informa-
tion, a frequency of use of a variable type during execution of
the software 202.

In some embodiments, the execution module 210 may be
configured to determine the type information based on the
profile information. For example, in some embodiments, the
execution module 210 may be configured to prioritize the
determination of type information for the variables based on
how often the variables are used, as indicated by the profile
information. As such, the execution module 210 may priori-
tize determining the type information for the more frequently
used variables over determining the type information for the
less used variables.

Additionally, in some embodiments, the execution module
210 may be configured to prioritize the determination of the
type information with respect to one or more frequently
called functions based on how often the frequently called
functions are called, as indicated by the profile information.
For example, the execution module 210 may be configured to
prioritize determining the type information for one or more
variables associated with the frequently called functions over
determining the type information for variables associated
with rarely called functions.

In these and other embodiments, the in-line caching mod-
ule 214 may be configured to perform in-line caching with
respect to the profile information. For example, the in-line
caching module 214 may prioritize which data structures of
the software 202 (e.g., data structures associated with call
sites of the software 202) to populate with type information
based on the frequency of use of the variables associated with
the data structures and/or frequency of function calls associ-
ated with the data structures that may be included in the
profile information. Additionally, in some embodiments, the
in-line caching module 214 may prioritize type information
for one type of a variable over another type of the variable in
an associated data structure that may include the type infor-
mation for the variable when the profile information indicates
that the one type is used more than the another type for the
variable.

The modified software module 216 may also be configured
to generate the modified software 206 based on the profile
information. For example, as described above, the in-line
caching module 214 may perform in-line caching using the
profile information to prioritize which data structures of the
software 202 to populate with associated type information.
The modified software module 216 may be configured to
store the software 202 with the prioritized type information
included therein as the modified software 206. Therefore, the
modified software 206 may include type information that
may be associated with frequently used variables, variable
types, and/or function calls that may be included in the profile
information.

In some embodiments, the modified software 206 may be
stored in a computer readable medium and/or distributed for
use or execution at a later time. As mentioned above, the
modified software 206 may include the software 202 with the
determined type information stored therein. Therefore, the
modified software 206 may perform operations based on type
information stored in the modified software 206 that may
have been determined ahead-of-time, which may reduce the
resources used during the execution of the modified software

US 9,256,398 B2

7

206. Additionally, the ahead-of-time in-line caching that may
be performed to generate the modified software 206 may
reduce or eliminate the amount of just-in-time in-line caching
that may be performed during execution of the modified
software 206. Therefore, the processing resources used to
execute the modified software 206 may be reduced as com-
pared to the processing resources used to execute the software
202.

Modifications, additions, or omissions may be made to
FIGS. 1 and 2 without departing from the scope of the present
disclosure. For example, one or more of the modules of the
type-information module 204 may be combined, or separated
into additional modules. The distinction between modules is
merely to facilitate an understanding of different functions
that may be performed by the type-information module 204.

FIG. 3 is a flow chart of an example method 300 of increas-
ing efficiency of a dynamically-typed software program,
arranged in accordance with at least one embodiment
described herein. The method 300 may be implemented, in
some embodiments, by a type-information module, such as
the type-information modules 104 and 204 of FIGS. 1 and 2,
respectively. Although illustrated as discrete blocks, various
blocks may be divided into additional blocks, combined into
fewer blocks, or eliminated, depending on the desired imple-
mentation.

The method 300 may begin, and at block 302, a dynami-
cally-typed software program (referred to hereinafter as “the
software program”) may be received. At block 304, the soft-
ware program may be executed. As described above, in some
embodiments, the software program may be executed using a
test suite. In these or other embodiments, the software pro-
gram may be executed using symbolic execution.

Atblock 306, type information for variables included in the
software program may be determined during execution of the
software program. For example, as described above, the type
information may be determined using runtime method bind-
ing. In some embodiments, the type information for the vari-
ables may be stored in data structures associated with call
sites of the software program that may use the variables. In
some embodiments, the type information may be stored in the
associated data structures using in-line caching, as described
above.

At block 308, a dynamically-typed modified software pro-
gram (referred to hereinafter as “the modified software pro-
gram”) may be generated based on the software program and
the type information. For example, as described above, the
software program with the type information stored therein
may be stored as the modified software program to generate
the modified software program.

At block 310, the modified software program may be dis-
tributed and/or stored for execution at a later time. As men-
tioned above, the modified software program may include
type information for variables included in the modified soft-
ware program that may have been determined ahead-of-time
during a previous execution of the software received at block
302. Additionally, the inclusion of the type information in the
modified software may reduce the amount of in-line caching
performed during execution of the modified software pro-
gram as compared to the amount of in-line caching that may
be performed during execution of the software program
received at block 302. Consequently, the amount of resources
used to execute and run the modified software program may
be reduced as compared to the amount of resources used to
execute and run the software program received at block 302.
Therefore, the method 300 may be used to increase the effi-
ciency of a dynamically-typed software program.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

One skilled in the art will appreciate that, for this and other
processes and methods disclosed herein, the functions per-
formed in the processes and methods may be implemented in
differing order. Furthermore, the outlined steps and opera-
tions are only provided as examples, and some of the steps
and operations may be optional, combined into fewer steps
and operations, or expanded into additional steps and opera-
tions without detracting from the essence of the disclosed
embodiments

For example, in some embodiments, the method 300 may
include steps related to profiling the software program
received at block 302 to determine profile information asso-
ciated with the software program. In some of these embodi-
ments, the profile information may be used to determine the
type information. For example, the profile information may
be used to determine which variables and/or variable types
may be frequently called such that determination of the type
information associated with these variables may be priori-
tized accordingly.

The embodiments described herein may include the use of
a special purpose or general-purpose computer including
various computer hardware or software modules, as dis-
cussed in greater detail below.

Embodiments described herein may be implemented using
computer-readable media, such as that described above, for
carrying or having computer-executable instructions or data
structures stored thereon. Such computer-readable media
may be any available media that may be accessed by a general
purpose or special purpose computer.

As used herein, the term “module” or “component” may
refer to hardware, and/or software objects or routines that
execute on the computing system. The different components,
modules, engines, and services described herein may be
implemented as objects or processes that execute on the com-
puting system (e.g., as separate threads). While the system
and methods described herein are described as possibly being
implemented in software, implementations in hardware or a
combination of software and hardware are also possible and
contemplated.

All examples and conditional language recited herein are
intended for pedagogical objects to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions. Although embodiments of the present inventions
have been described in detail, it should be understood that the
various changes, substitutions, and alterations could be made
hereto without departing from the spirit and scope of the
present disclosure.

What is claimed is:

1. A method ofincreasing efficiency of a software program,
the method comprising:

executing a software program that is developed based on a

dynamically-typed programing language;

determining, during execution of the software program,

type information for one or more variables included in

the software program, the determining type information

including:

profiling the software program to determine a frequency
of use for each of the one or more variables in the
software program, wherein the one or more variables
include a first variable associated with a first fre-
quency of use in the software program and a second
variable associated with a second frequency of use in
the software program;

determining the type information for the one or more
variables based on the frequency of use for each of the

US 9,256,398 B2

9

one or more variables, wherein determining the type
information includes prioritizing, in response to the
first frequency of use being greater than the second
frequency of use, determining the type information
for the first variable over the second variable; and

profiling the software program to determine a frequency
of function calls with respect to a plurality of data
structures of the software program;

determining one or more data structures from the plurality

of data structures to populate with the type information
based on one or more of the following: the frequency of
use for each of the one or more variables with respect to
the plurality of data structures and the frequency of
function calls with respect to the plurality of data struc-
tures;

generating a modified software program based on the soft-

ware program, the type information, and the determina-
tion of the one or more data structures, the generating of
the modified software program including population of
the one or more data structures with the type information
in response to determining the one or more data struc-
tures; and

distributing the modified software program.

2. The method of claim 1, wherein generating the modified
software program includes storing the type information for
the one or more variables in data structures of the software
program, each of the data structures being associated with a
call site of the software program that uses at least one of the
one or more variables.

3. The method of claim 1, further comprising:

determining a frequently-used function of the software

program based on the profiling of the software program;
and

determining the type information for at least one of the one

or more variables in the software program based on the
at least one variable being included in the frequently-
used function.

4. The method of claim 1, further comprising:

determining a frequency of use of a variable type during

execution of the software program based on profiling the
software program; and

determining the type information based on the frequency

of'use of the variable type.

5. The method of claim 1, further comprising performing
runtime method binding to determine the type information.

6. The method of claim 1, further comprising performing
in-line caching to store the type information for the one or
more variables in data structures of the software program,
each of the data structures being associated with a call site of
the software program that uses at least one of the one or more
variables.

7. The method of claim 1, further comprising performing
symbolic execution of the software program to execute the
software program.

8. The method of claim 1, further comprising applying a
test suite to the software program to execute the software
program.

9. A processor configured to execute computer instructions
from a computer readable medium to cause a system to per-
form operations to increase efficiency of a software program,
the operations comprising:

executing a software program that is developed based on a

dynamically-typed programing language;

determining, during execution of the software program,

type information for one or more variables included in
the software program, the determining type information
including:

10

15

20

25

30

35

40

45

50

55

60

65

10

profiling the software program to determine a frequency
of use for each of the one or more variables in the
software program, wherein the one or more variables
include a first variable associated with a first fre-
quency of use in the software program and a second
variable associated with a second frequency of use in
the software program;

determining the type information for the one or more
variables based on the frequency of use for each of the
one or more variables, wherein determining the type
information includes prioritizing, in response to the
first frequency of use being greater than the second
frequency of use, determining the type information
for the first variable over the second variable; and

profiling the software program to determine a frequency
of function calls with respect to a plurality of data
structures of the software program;

determining one or more data structures from the plurality

of data structures to populate with the type information
based on one or more of the following: the frequency of
use for each of the one or more variables with respect to
the plurality of data structures and the frequency of
function calls with respect to the plurality of data struc-
tures;

generating a modified software program based on the soft-

ware program, the type information, and the determina-
tion of the one or more data structures, the generating of
the modified software program including population of
the one or more data structures with the type information
in response to determining the one or more data struc-
tures; and

distributing the modified software program.

10. The processor of claim 9, wherein generating the modi-
fied software program includes storing the type information
for the one or more variables in data structures of the software
program, each of the data structures being associated with a
call site of the software program that uses at least one of the
one or more variables.

11. The processor of claim 9, wherein the operations fur-
ther comprise:

determining a frequently-used function of the software

program based on the profiling of the software program;
and

determining the type information for at least one of the one

or more variables in the software program based on the
at least one variable being included in the frequently-
used function.

12. The processor of claim 9, wherein the operations fur-
ther comprise:

determining a frequency of use of a variable type during

execution of the software program based on profiling the
software program; and

determining the type information based on the frequency

of use of the variable type.

13. The processor of claim 9, wherein the operations fur-
ther comprise performing runtime method binding to deter-
mine the type information.

14. The processor of claim 9, wherein the operations fur-
ther comprise performing in-line caching to store the type
information for the one or more variables in data structures of
the software program, each of the data structures being asso-
ciated with a call site of the software program that uses at least
one of the one or more variables.

15. The processor of claim 9, wherein the operations fur-
ther comprise performing symbolic execution of the software
program to execute the software program.

US 9,256,398 B2
11

16. The processor of claim 9, wherein the operations fur-
ther comprise applying a test suite to the software program to
execute the software program.

#* #* #* #* #*

12

